Image Compression Based on Generalized Principal Components Analysis and Simulated Annealing
نویسندگان
چکیده
The authors propose a new data dimensionality reduction method that is formulated as an optimization problem solved in two stages. In the first stage, Generalized Principal Component Analysis (GPCA) is used to find a solution with local maximum (local solution) whereas the algorithm Simulated Annealing (SA) is performed, in the second stage, to converge the local solution to the optimal solution. The performance of GPCA and GPCA with Simulated Annealing (GPCA-SA) as images compressors was evaluated in terms of the Compression Peak Signal-to-Noise Rate (CPSNR), memory size necessary to store the resulting compressed image and Contrast-to-Noise ratio. The results show that GPCA and GPCA-SA requires the same amount of memory to store compressed data, but GPCA-SA provides better CPSNR than GPCA. They also compared the performance of our designed method with a wavelet-based compression technique widely used in medical imaging, known as Lifting, to demonstrate the efficiency of GPCA-SA in clinical application. INTRODUCTION Image Compression
منابع مشابه
A kernel vector quantization codebook designing for image compression based on simulated annealing into genetic algorithm
To solve premature phenomenon and falling into local optimum of genetic algorithm, the simulated annealing algorithm is introduced to the genetic algorithm and a simulated annealing is presented based on genetic clustering algorithm, a new effective SA, crossover operator and mutation operator proposed for fitting the partition-based chromosome coding. In addition, the Euclidean distance is rep...
متن کاملFaults and fractures detection in 2D seismic data based on principal component analysis
Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...
متن کاملIteration Free Fractal Image Compression For Color Images Using Vector Quantization, Genetic Algorithm And Simulated Annealing
This research paper on iteration free fractal image compression for color images using the techniques Vector Quantization, Genetic Algorithm and Simulated Annealing is proposed, for lossy compression, to improve the decoded image quality, compression ratio and reduction in coding time. Fractal coding consists of the representation of image blocks through the contractive transformation coefficie...
متن کاملAssessment of the Wavelet Transform for Noise Reduction in Simulated PET Images
Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...
متن کاملHybrid Genetic-Simulated Annealing Approach for Fractal Image Compression
In this paper a hybrid technique of Genetic Algorithm and Simulated Annealing (HGASA) is applied for Fractal Image Compression (FIC). With the help of this hybrid evolutionary algorithm effort is made to reduce the search complexity of matching between range block and domain block. The concept of Simulated Annealing (SA) is incorporated into Genetic Algorithm (GA) in order to avoid pre-mature c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJCINI
دوره 6 شماره
صفحات -
تاریخ انتشار 2012